20431 measured reflections

 $R_{\rm int} = 0.033$

7979 independent reflections

5980 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Octabenzyldi- μ_2 -methanolato-di- μ_3 oxido-bis(p-toluenesulfonato)tetratin(IV)

Shun-Li Li, Ting-Ting Han and Jin Yang*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: yangjinnenu@yahoo.com.cn

Received 24 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.036; wR factor = 0.077; data-to-parameter ratio = 20.1.

The title compound, $[Sn_4(C_7H_7)_8(CH_3O)_2(C_7H_7O_3S)_2O_2],$ contains the well known structural unit of four organotin units linked by O-atom bridges into a ladder-type centrosymmetric tetramer. The Sn^{IV} atoms are coordinated in distorted SnC₂O₃ trigonal-bipyramidal geometries.

Related literature

For related literature, see: Chandrasekhar et al. (2003).

Experimental

Crystal data

л Ν

а h

C

$[Sn_4(C_7H_7)_8(CH_3O)_2-$	$\beta = 99.409 \ (1)^{\circ}$
$(C_7H_7O_3S)_2O_2]$	$V = 3368 (2) \text{ Å}^3$
$M_r = 1640.21$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 11.520 (5) Å	$\mu = 1.59 \text{ mm}^{-1}$
b = 11.302 (4) Å	T = 293 (2) K
c = 26.219 (11) Å	$0.43 \times 0.15 \times 0.13 \text{ mm}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.747, T_{\max} = 0.820$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 397 parameters $wR(F^2) = 0.077$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$ 7979 reflections

Table 1

Selected bond lengths (Å).

Sn1-O1	2.176 (2)	Sn2-O2	2.047 (2)
Sn1-O2	2.008 (2)	Sn2-O2 ⁱ	2.148 (2)
Sn1-O5	2.260 (2)	Sn2-C7	2.146 (3)
Sn1-C21	2.134 (4)	Sn2-C14	2.142 (4)
Sn1-C28	2.140 (4)		

Symmetry code: (i) -x + 2, -y, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

We thank the Science Foundation for Young Teachers of Northeast Normal University (No. 20060304) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2613).

References

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandrasekhar, V., Boomishankar, R., Steiner, A. & Bickley, J. F. (2003). Organometallics, 22, 3342-3344.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2865 [doi:10.1107/S1600536807052804]

Octabenzyldi- μ_2 -methanolato-di- μ_3 -oxido-bis(*p*-toluenesulfonato)tetratin(IV)

S.-L. Li, T.-T. Han and J. Yang

Comment

Some organotin(IV) derivatives of sulfonates show antitumor activities (Chandrasekhar *et al.*, 2003). In this paper, we report the structure of a new organotin sulfonate, $[Sn_4(Bz)_8(L)_2(OCH_3)_2(O)_2]$, (I), where Bz = the benzyl group and L = p-toluenesulfonate.

Selected bond lengths for (I) are listed in Table 1. Both Sn(IV) atoms are five-coordinated in distorted trigonal-bipyramidal geometries. The *exo* tin atom (Sn1) is coordinated by two benzyl groups, one μ^3 -O²⁻ anion, one μ^2 -OCH₃⁻ anion and one *L* O atom. The *endo* tin atom (Sn2) is coordinated by two benzyl groups, two μ^3 -O²⁻ anions, one μ^2 -OCH₃⁻ anion and one *L* O atom. The four Sn(IV) atoms are connected by two μ^3 -O²⁻ anions, generating the title Sn—O ladder structure. The *p*-toluenesulfonate anions and μ^2 -OCH₃⁻ anion are attached on both sides of the ladder.

Experimental

A solution of *p*-toluenesulfonic aicd (100 mmol) in water (20 ml) was added to a mixture of Ag_2CO_3 (50 mmol) in water (20 ml). After stirring for several minutes until no CO_2 was given off, the white precipitate (AgL) was collected by removing the solvent *in vacuo*. Then a mixture of AgL (1.0 mmol) and Bz_2SnCl_2 (1.0 mmol) in CH₂Cl₂ (30 ml) were stirred continuously for 24 h at room temperature, the precipitate of AgCl was removed by filtration. Colourless blocks of (I) were obtained by evaporating the filtrate at room temperature.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.9and refined as riding atoms with C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. View of (I) with displacement ellipsoids drawn at the 20% probability level and all H atoms omitted for clarity. Symmetry code: (i) 2 - x, 2 - y, 1 - z.

Octabenzyldi- μ_2 -methanolato-di- μ_3 -oxido-bis(p-toluenesulfonato)tetratin(IV)

Crystal data

[Sn₄(C₇H₇)₈(CH₃O)₂(C₇H₇O₃S)₂O₂] $F_{000} = 1640$ $M_r = 1640.21$ $D_{\rm x} = 1.617 \ {\rm Mg \ m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71069 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 7979 reflections $\theta = 1.6 - 28.4^{\circ}$ *a* = 11.520 (5) Å b = 11.302 (4) Å $\mu = 1.59 \text{ mm}^{-1}$ T = 293 (2) K*c* = 26.219 (11) Å $\beta = 99.409 (1)^{\circ}$ Block, colourless $V = 3368 (2) \text{ Å}^3$ $0.43 \times 0.15 \times 0.13 \text{ mm}$ Z = 2

Data collection

Bruker APEX CCD diffractometer	5980 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.033$
T = 293(2) K	$\theta_{max} = 28.4^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.747, \ T_{\max} = 0.820$	$k = -15 \rightarrow 11$
20431 measured reflections	$l = -24 \rightarrow 34$
7979 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_0^2) + (0.029P)^2 + 0.8649P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
7979 reflections	$\Delta \rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$
397 parameters	$\Delta \rho_{min} = -0.88 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

397 parameters Primary atom sit methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y C1 0.0794 (15) 0.6175 (4) -0.1697(5)0.5096 (2) H10.5940 -0.13840.5391 0.095* C2 0.5355 (4) -0.1953(5)0.0826 (17) 0.4674 (3) H2 0.099* 0.4560 -0.18210.4679 C3 0.5714 (4) -0.2403(4)0.4247(2)0.0740 (15) H3 0.5161 -0.25780.3957 0.089* C4 0.6885 (4) -0.2604(3)0.42368 (17) 0.0559(11) H4 0.7112 -0.29230.3941 0.067* C5 0.7735(3)-0.2341(3)0.46587 (15) 0.0395(9)C6 0.7349 (4) -0.1900(4)0.50868 (18) 0.0570(11) H6 0.7896 -0.17330.5380 0.068* C7 0.9010 (3) 0.46511 (14) 0.0385 (9) -0.2574(3)-0.3123 H7A 0.9066 0.4372 0.046* H7B 0.9335 -0.29670.4972 0.046* C8 1.2273 (4) -0.2390(4)0.37217 (17) 0.0552(11) H8 1.2037 -0.30510.3889 0.066* C9 1.2649 (4) -0.2526(5)0.3254 (2) 0.0735 (15) H9 1.2662 0.3108 0.088* -0.3275C10 1.3005 (4) -0.1567 (6) 0.30022 (18) 0.0767 (15) H10 0.092* 1.3262 0.2686 -0.1663C11 1.2983 (4) -0.0470(5)0.3216(2) 0.0715 (14) H11 1.3224 0.0186 0.3046 0.086* C12 1.2600 (4) -0.0331 (4) 0.36872 (17) 0.0559 (11) H12 1.2588 0.0420 0.067* 0.3830 C13 1.2238 (3) -0.1290 (3) 0.39479 (14) 0.0368 (8) C14 1.1905 (3) 0.44700 (15) -0.1172(3)0.0424 (9) H14A 1.2291 -0.04670.4627 0.051* H14B 1.2246 0.051* -0.18400.4674 C15 0.5976 (3) -0.0233(3)0.30526 (17) 0.0513 (11) H15 0.6308 -0.09460.3180 0.062* C16 0.5459 (4) -0.0161 (4) 0.25441 (18) 0.0633 (13) H16 0.076* 0.5444 -0.08190.2330 C17 0.4961 (4) 0.0893 (4) 0.23504 (18) 0.0659 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H17	0.4617	0.0952	0.2005	0.079*
C18	0.4979 (4)	0.1853 (4)	0.26744 (17)	0.0598 (12)
H18	0.4635	0.2561	0.2548	0.072*
C19	0.5501 (3)	0.1771 (3)	0.31809 (16)	0.0498 (10)
H19	0.5508	0.2430	0.3394	0.060*
C20	0.6018 (3)	0.0730 (3)	0.33828 (15)	0.0421 (9)
C21	0.6640 (3)	0.0670 (3)	0.39339 (15)	0.0465 (10)
H21A	0.6591	-0.0129	0.4064	0.056*
H21B	0.6255	0.1195	0.4147	0.056*
C22	1.0230 (4)	0.1157 (4)	0.28211 (18)	0.0604 (12)
H22	1.0917	0.1228	0.3060	0.072*
C23	1.0255 (5)	0.0580 (4)	0.2367 (2)	0.0750 (14)
H23	1.0965	0.0274	0.2300	0.090*
C24	0.9264 (6)	0.0440 (4)	0.20063 (19)	0.0798 (16)
H24	0.9290	0.0030	0.1701	0.096*
C25	0.8232 (5)	0.0918 (4)	0.21050 (19)	0.0741 (15)
H25	0.7549	0.0839	0.1864	0.089*
C26	0.8202 (4)	0.1520 (4)	0.25627 (17)	0.0603 (12)
H26	0.7498	0.1850	0.2624	0.072*
C27	0.9203 (3)	0.1637 (3)	0.29309 (15)	0.0435 (9)
C28	0.9156 (4)	0.2233 (3)	0.34408 (15)	0.0543 (11)
H28A	0.8686	0.2946	0.3377	0.065*
H28B	0.9947	0.2470	0.3592	0.065*
C29	0.9053 (4)	-0.1259 (3)	0.33632 (14)	0.0498 (10)
H29A	0.8628	-0.0833	0.3075	0.075*
H29B	0.8621	-0.1956	0.3425	0.075*
H29C	0.9811	-0.1482	0.3288	0.075*
C30	0.8621 (3)	0.4827 (3)	0.53460 (15)	0.0453 (9)
H30	0.9356	0.4707	0.5251	0.054*
C31	0.8547 (4)	0.5357 (3)	0.58147 (16)	0.0509 (10)
H31	0.9231	0.5582	0.6033	0.061*
C32	0.7461 (4)	0.5556 (4)	0.59623 (18)	0.0595 (12)
C33	0.6469 (4)	0.5159 (4)	0.56382 (19)	0.0707 (14)
H33	0.5736	0.5252	0.5738	0.085*
C34	0.6540 (4)	0.4622 (4)	0.51658 (18)	0.0634 (12)
H34	0.5864	0.4366	0.4951	0.076*
C35	0.7634 (3)	0.4477 (3)	0.50208 (15)	0.0437 (9)
C36	0.7358 (5)	0.6198 (4)	0.6461 (2)	0.0920 (18)
H36A	0.8128	0.6414	0.6635	0.138*
H36B	0.6990	0.5688	0.6680	0.138*
H36C	0.6890	0.6898	0.6384	0.138*
01	0.9200 (2)	-0.05216 (19)	0.38134 (8)	0.0369 (6)
O2	0.94751 (19)	0.06087 (18)	0.46365 (8)	0.0309 (5)
O3	0.6557 (3)	0.3742 (3)	0.41211 (12)	0.0726 (10)
O4	0.8481 (3)	0.4679 (2)	0.41599 (12)	0.0740 (9)
O5	0.8325 (2)	0.2759 (2)	0.44978 (10)	0.0483 (7)
Sn1	0.84442 (2)	0.116534 (19)	0.398869 (9)	0.03191 (7)
Sn2	1.009325 (19)	-0.106902 (18)	0.456013 (9)	0.02769 (7)
S1	0.77362 (9)	0.38944 (8)	0.43973 (4)	0.0467 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.056 (3)	0.089 (4)	0.100 (4)	-0.004 (3)	0.031 (3)	-0.015 (3)
C2	0.033 (3)	0.079 (4)	0.135 (6)	-0.006 (2)	0.012 (3)	0.005 (4)
C3	0.043 (3)	0.078 (3)	0.091 (4)	-0.013 (2)	-0.019 (3)	0.008 (3)
C4	0.054 (3)	0.056 (3)	0.053 (3)	-0.010 (2)	-0.004 (2)	0.000 (2)
C5	0.039 (2)	0.0277 (17)	0.050 (2)	-0.0040 (14)	0.0011 (18)	0.0042 (16)
C6	0.043 (2)	0.062 (3)	0.065 (3)	-0.009 (2)	0.007 (2)	-0.010 (2)
C7	0.042 (2)	0.0266 (17)	0.045 (2)	-0.0005 (14)	0.0030 (17)	0.0021 (15)
C8	0.054 (3)	0.051 (2)	0.063 (3)	-0.0043 (19)	0.018 (2)	-0.009 (2)
С9	0.061 (3)	0.089 (4)	0.075 (4)	-0.002 (3)	0.024 (3)	-0.038 (3)
C10	0.060 (3)	0.136 (5)	0.038 (3)	-0.012 (3)	0.020 (2)	-0.011 (3)
C11	0.063 (3)	0.094 (4)	0.060 (3)	-0.011 (3)	0.019 (3)	0.021 (3)
C12	0.061 (3)	0.054 (3)	0.056 (3)	-0.006 (2)	0.020 (2)	0.009 (2)
C13	0.0265 (17)	0.046 (2)	0.038 (2)	0.0017 (14)	0.0069 (15)	-0.0002 (16)
C14	0.0313 (19)	0.055 (2)	0.041 (2)	0.0035 (16)	0.0082 (16)	0.0006 (18)
C15	0.044 (2)	0.046 (2)	0.061 (3)	0.0000 (18)	0.001 (2)	-0.001 (2)
C16	0.059 (3)	0.066 (3)	0.062 (3)	-0.004 (2)	0.002 (2)	-0.022 (2)
C17	0.058 (3)	0.089 (4)	0.044 (3)	-0.008 (2)	-0.011 (2)	-0.002 (2)
C18	0.055 (3)	0.057 (3)	0.060 (3)	0.008 (2)	-0.011 (2)	0.010 (2)
C19	0.048 (2)	0.044 (2)	0.053 (3)	0.0027 (18)	-0.008 (2)	-0.0032 (19)
C20	0.034 (2)	0.043 (2)	0.046 (2)	-0.0010 (16)	-0.0008 (17)	-0.0018 (18)
C21	0.042 (2)	0.047 (2)	0.048 (2)	-0.0035 (17)	0.0024 (19)	0.0099 (19)
C22	0.058 (3)	0.072 (3)	0.051 (3)	-0.005 (2)	0.009 (2)	-0.001 (2)
C23	0.084 (4)	0.079 (3)	0.070 (4)	0.008 (3)	0.037 (3)	-0.005 (3)
C24	0.129 (5)	0.074 (3)	0.044 (3)	-0.019 (3)	0.038 (3)	-0.008 (2)
C25	0.082 (4)	0.099 (4)	0.039 (3)	-0.012 (3)	0.001 (3)	0.005 (3)
C26	0.060 (3)	0.071 (3)	0.050 (3)	0.001 (2)	0.011 (2)	0.016 (2)
C27	0.053 (2)	0.041 (2)	0.039 (2)	-0.0054 (18)	0.0135 (19)	0.0079 (17)
C28	0.082 (3)	0.040 (2)	0.043 (2)	-0.011 (2)	0.016 (2)	0.0018 (18)
C29	0.070 (3)	0.047 (2)	0.030 (2)	0.0069 (19)	-0.0003 (19)	-0.0088 (17)
C30	0.050 (2)	0.038 (2)	0.048 (3)	-0.0009 (17)	0.009 (2)	0.0003 (18)
C31	0.059 (3)	0.048 (2)	0.046 (3)	-0.0091 (19)	0.009 (2)	-0.0073 (19)
C32	0.069 (3)	0.054 (3)	0.056 (3)	0.000 (2)	0.014 (3)	-0.006 (2)
C33	0.058 (3)	0.089 (3)	0.070 (4)	0.011 (3)	0.025 (3)	-0.013 (3)
C34	0.045 (3)	0.079 (3)	0.065 (3)	0.009 (2)	0.007 (2)	-0.012 (3)
C35	0.051 (2)	0.037 (2)	0.045 (2)	0.0054 (17)	0.0098 (19)	-0.0037 (17)
C36	0.127 (5)	0.095 (4)	0.062 (3)	-0.003 (3)	0.041 (3)	-0.032 (3)
01	0.0528 (15)	0.0330 (12)	0.0234 (13)	0.0078 (11)	0.0017 (11)	-0.0058 (10)
02	0.0405 (13)	0.0277 (11)	0.0226 (12)	0.0075 (10)	-0.0002 (10)	-0.0002 (9)
O3	0.068 (2)	0.074 (2)	0.065 (2)	0.0164 (16)	-0.0195 (17)	-0.0156 (16)
O4	0.113 (3)	0.0529 (18)	0.064 (2)	-0.0100 (17)	0.038 (2)	0.0005 (15)
O5	0.0612 (17)	0.0426 (14)	0.0393 (15)	0.0127 (12)	0.0023 (13)	-0.0162 (12)
Sn1	0.03670 (14)	0.03096 (13)	0.02622 (13)	0.00300 (10)	-0.00032 (10)	0.00190 (10)
Sn2	0.03021 (12)	0.02620 (12)	0.02663 (12)	0.00233 (9)	0.00452 (9)	-0.00210 (9)
S1	0.0593 (6)	0.0383 (5)	0.0411 (6)	0.0080 (4)	0.0038 (5)	-0.0014 (4)

Geometric parameters (Å, °)

C1—C6 1.376 (6) C23—C24 1.368 (C1—H1 0.9300 C23—H23 0.9300 C2—C3 1.354 (7) C24—C25 1.367 (C2—H2 0.9300 C24—H24 0.9300 C3—C4 1.372 (6) C25—C26 1.385 (7) 7) 5)
C1—H10.9300C23—H230.9300C2—C31.354 (7)C24—C251.367 (*C2—H20.9300C24—H240.9300C3—C41.372 (6)C25—C261.385 (*	7) 5)
C2—C31.354 (7)C24—C251.367 (7)C2—H20.9300C24—H240.9300C3—C41.372 (6)C25—C261.385 (7)	7) 5)
C2—H20.9300C24—H240.9300C3—C41.372 (6)C25—C261.385 (0)	6)
C3—C4 1.372 (6) C25—C26 1.385 (6)
C3—H3 0.9300 C25—H25 0.9300	
C4—C5 1.384 (5) C26—C27 1.384 (5)	5)
C4—H4 0.9300 C26—H26 0.9300	
C5—C6 1.367 (6) C27—C28 1.506 (2	5)
C5—C7 1.495 (5) C28—H28A 0.9700	
C6—H6 0.9300 C28—H28B 0.9700	
C7—H7A 0.9700 C29—O1 1.432 (4	4)
С7—Н7В 0.9700 С29—Н29А 0.9600	
C8—C9 1.375 (6) C29—H29B 0.9600	
C8—C13 1.381 (5) C29—H29C 0.9600	
С8—Н8 0.9300 С30—С35 1.364 (5)
C9—C10 1.366 (7) C30—C31 1.382 (5)
С9—Н9 0.9300 С30—Н30 0.9300	
C10—C11 1.363 (7) C31—C32 1.387 (4	6)
C10—H10 0.9300 C31—H31 0.9300	
C11—C12 1.387 (6) C32—C33 1.383 (6)
C11—H11 0.9300 C32—C36 1.517 (6)
C12—C13 1.381 (5) C33—C34 1.394 (4	6)
C12—H12 0.9300 C33—H33 0.9300	
C13—C14 1.486 (5) C34—C35 1.384 (6)
C14—H14A 0.9700 C34—H34 0.9300	
C14—H14B 0.9700 C35—S1 1.784 (4	4)
C15—C16 1.371 (5) C36—H36A 0.9600	
C15—C20 1.387 (5) C36—H36B 0.9600	
C15—H15 0.9300 C36—H36C 0.9600	
C16—C17 1.383 (6) Sn1—O1 2.176 (2	2)
C16—H16 0.9300 Sn1—O2 2.008 (2)
C17—C18 1.376 (6) Sn1—O5 2.260 (2	2)
C17—H17 0.9300 Sn1—C21 2.134 (4	4)
C18—C19 1.368 (5) Sn1—C28 2.140 (4	4)
C18—H18 0.9300 Sn2—O2 2.047 (2)
C19—C20 1.384 (5) $Sn2$ —O2 ⁱ 2.148 (2)	2)
C19—H19 0.9300 Sn2—O2 ⁱ 2.148 (2)
C20—C21 1.506 (5) Sn2—C7 2.146 (5)	3)
C21—H21A 0.9700 Sn2—C14 2.142 (4	4)
C21—H21B 0.9700 O3—S1 1.442 (2	3)
C22—C23 1.362 (6) O4—S1 1.444 (2	3)
C22—C27 1.373 (6) O5—S1 1.455 (2	2)
C2—C1—C6 120.2 (5) C23—C24—H24 120.8	

C2—C1—H1	119.9	C24—C25—C26	120.2 (5)
C6—C1—H1	119.9	С24—С25—Н25	119.9
C3—C2—C1	119.0 (5)	С26—С25—Н25	119.9
C3—C2—H2	120.5	C27—C26—C25	121.0 (5)
C1—C2—H2	120.5	С27—С26—Н26	119.5
C2—C3—C4	120.9 (5)	С25—С26—Н26	119.5
С2—С3—Н3	119.6	C22—C27—C26	117.6 (4)
С4—С3—Н3	119.6	C22—C27—C28	121.3 (4)
C3—C4—C5	121.2 (5)	C26—C27—C28	121.0 (4)
C3—C4—H4	119.4	C27—C28—Sn1	114.6 (2)
C5—C4—H4	119.4	C27—C28—H28A	108.6
C6—C5—C4	116.9 (4)	Sn1—C28—H28A	108.6
C6—C5—C7	121.8 (3)	C27—C28—H28B	108.6
C4—C5—C7	121.3 (4)	Sn1—C28—H28B	108.6
C5—C6—C1	121.8 (4)	H28A—C28—H28B	107.6
С5—С6—Н6	119.1	O1—C29—H29A	109.5
С1—С6—Н6	119.1	O1—C29—H29B	109.5
C5—C7—Sn2	116.9 (2)	H29A—C29—H29B	109.5
С5—С7—Н7А	108.1	O1—C29—H29C	109.5
Sn2—C7—H7A	108.1	H29A—C29—H29C	109.5
С5—С7—Н7В	108.1	H29B—C29—H29C	109.5
Sn2—C7—H7B	108.1	C35—C30—C31	121.0 (4)
H7A—C7—H7B	107.3	С35—С30—Н30	119.5
C9—C8—C13	121.3 (4)	С31—С30—Н30	119.5
С9—С8—Н8	119.3	C30—C31—C32	120.5 (4)
С13—С8—Н8	119.3	С30—С31—Н31	119.7
С10—С9—С8	120.3 (4)	C32—C31—H31	119.7
С10—С9—Н9	119.8	C33—C32—C31	117.9 (4)
С8—С9—Н9	119.8	C33—C32—C36	120.7 (5)
C11—C10—C9	119.7 (4)	C31—C32—C36	121.3 (4)
C11-C10-H10	120.1	C32—C33—C34	121.7 (5)
C9—C10—H10	120.1	С32—С33—Н33	119.2
C10-C11-C12	119.9 (4)	С34—С33—Н33	119.2
C10-C11-H11	120.0	C35—C34—C33	119.0 (4)
C12—C11—H11	120.0	С35—С34—Н34	120.5
C13—C12—C11	121.2 (4)	С33—С34—Н34	120.5
C13—C12—H12	119.4	C30—C35—C34	119.8 (4)
C11—C12—H12	119.4	C30—C35—S1	120.5 (3)
C8—C13—C12	117.4 (4)	C34—C35—S1	119.7 (3)
C8—C13—C14	120.4 (3)	С32—С36—Н36А	109.5
C12—C13—C14	122.0 (3)	С32—С36—Н36В	109.5
C13—C14—Sn2	120.6 (2)	H36A—C36—H36B	109.5
C13—C14—H14A	107.2	С32—С36—Н36С	109.5
Sn2—C14—H14A	107.2	H36A—C36—H36C	109.5
C13—C14—H14B	107.2	H36B—C36—H36C	109.5
Sn2—C14—H14B	107.2	C29—O1—Sn2	123.9 (2)
H14A—C14—H14B	106.8	C29—O1—Sn1	133.3 (2)
C16—C15—C20	121.7 (4)	Sn2—O1—Sn1	102.02 (9)
C16—C15—H15	119.1	Sn1—O2—Sn2	112.00 (10)

supplementary materials

C20—C15—H15	119.1	Sn1—O2—Sn2 ⁱ	139.81 (11)
C15—C16—C17	119.8 (4)	Sn2—O2—Sn2 ⁱ	106.98 (9)
C15-C16-H16	120.1	S1—O5—Sn1	131.89 (15)
С17—С16—Н16	120.1	O2—Sn1—C21	114.17 (12)
C18—C17—C16	119.3 (4)	O2—Sn1—C28	120.39 (14)
C18—C17—H17	120.4	C21—Sn1—C28	125.36 (16)
C16—C17—H17	120.4	O2—Sn1—O1	72.69 (8)
C19—C18—C17	120.4 (4)	C21—Sn1—O1	100.08 (13)
C19-C18-H18	119.8	C28—Sn1—O1	98.14 (13)
C17—C18—H18	119.8	O2—Sn1—O5	80.49 (9)
C18—C19—C20	121.4 (4)	C21—Sn1—O5	95.51 (13)
C18—C19—H19	119.3	C28—Sn1—O5	90.81 (13)
С20—С19—Н19	119.3	O1—Sn1—O5	152.67 (9)
C19—C20—C15	117.4 (4)	O2—Sn2—C14	114.96 (12)
C19—C20—C21	120.9 (3)	O2—Sn2—C7	120.35 (12)
C15—C20—C21	121.7 (3)	C14—Sn2—C7	124.35 (13)
C20—C21—Sn1	111.0 (3)	$O2$ — $Sn2$ — $O2^i$	73.02 (9)
С20—С21—Н21А	109.4	C14—Sn2—O2 ⁱ	92.74 (12)
Sn1—C21—H21A	109.4	$C7$ — $Sn2$ — $O2^{i}$	97.39 (11)
C20—C21—H21B	109.4	O2—Sn2—O1	72.54 (8)
Sn1—C21—H21B	109.4	C14—Sn2—O1	104.19 (12)
H21A—C21—H21B	108.0	C7—Sn2—O1	97.42 (11)
C23—C22—C27	121.0 (4)	O2 ⁱ —Sn2—O1	145.45 (8)
C23—C22—H22	119.5	O3—S1—O4	115.8 (2)
С27—С22—Н22	119.5	O3—S1—O5	111.00 (16)
C22—C23—C24	121.6 (5)	O4—S1—O5	109.10 (19)
С22—С23—Н23	119.2	O3—S1—C35	107.8 (2)
С24—С23—Н23	119.2	O4—S1—C35	107.54 (18)
C25—C24—C23	118.5 (5)	O5—S1—C35	104.95 (16)
C25—C24—H24	120.8		
C6—C1—C2—C3	-0.3 (8)	Sn2—O2—Sn1—O5	178.26 (13)
C1—C2—C3—C4	0.2 (8)	$Sn2^{i}$ —O2—Sn1—O5	13.22 (18)
C2—C3—C4—C5	-0.8 (7)	C20-C21-Sn1-O2	-160.3 (2)
C3—C4—C5—C6	1.5 (6)	C20-C21-Sn1-C28	22.7 (3)
C3—C4—C5—C7	179.2 (4)	C20-C21-Sn1-O1	-84.9 (3)
C4—C5—C6—C1	-1.7 (6)	C20-C21-Sn1-O5	117.6 (3)
C7—C5—C6—C1	-179.3 (4)	C27—C28—Sn1—O2	112.3 (3)
C2—C1—C6—C5	1.1 (7)	C27—C28—Sn1—C21	-70.9 (4)
C6—C5—C7—Sn2	-77.6 (4)	C27—C28—Sn1—O1	37.7 (3)
C4—C5—C7—Sn2	104.8 (3)	C27—C28—Sn1—O5	-168.2 (3)
C13—C8—C9—C10	0.3 (7)	C29—O1—Sn1—O2	176.6 (3)
C8—C9—C10—C11	-0.2 (8)	Sn2—O1—Sn1—O2	6.36 (9)
C9—C10—C11—C12	0.1 (7)	C29—O1—Sn1—C21	64.2 (3)
C10-C11-C12-C13	0.0 (7)	Sn2—O1—Sn1—C21	-105.98 (13)
C9—C8—C13—C12	-0.3 (6)	C29—O1—Sn1—C28	-64.0 (3)
C9—C8—C13—C14	-175.8 (4)	Sn2—O1—Sn1—C28	125.75 (14)
C11-C12-C13-C8	0.1 (6)	C29—O1—Sn1—O5	-171.9 (3)

C11—C12—C13—C14	175.6 (4)	Sn2—O1—Sn1—O5	17.8 (3)
C8—C13—C14—Sn2	-85.0 (4)	S1—O5—Sn1—O2	177.3 (2)
C12-C13-C14-Sn2	99.6 (4)	S1—O5—Sn1—C21	-69.1 (2)
C20-C15-C16-C17	-0.1 (7)	S1—O5—Sn1—C28	56.6 (3)
C15-C16-C17-C18	-0.8 (7)	S1—O5—Sn1—O1	166.20 (17)
C16-C17-C18-C19	1.0 (7)	Sn1—O2—Sn2—C14	105.02 (14)
C17-C18-C19-C20	-0.3 (7)	$Sn2^{i}$ —O2—Sn2—C14	-85.01 (15)
C18—C19—C20—C15	-0.6 (6)	Sn1—O2—Sn2—C7	-81.28 (16)
C18—C19—C20—C21	177.0 (4)	$Sn2^{i}$ —O2—Sn2—C7	88.68 (14)
C16—C15—C20—C19	0.8 (6)	Sn1—O2—Sn2—O2 ⁱ	-169.97 (18)
C16—C15—C20—C21	-176.8 (4)	$Sn2^{i}$ —O2— $Sn2$ — $O2^{i}$	0.0
C19-C20-C21-Sn1	-88.0 (4)	Sn1—O2—Sn2—O1	7.15 (10)
C15—C20—C21—Sn1	89.5 (4)	Sn2 ⁱ —O2—Sn2—O1	177.12 (13)
C27—C22—C23—C24	-0.9 (7)	C13—C14—Sn2—O2	-97.7 (3)
C22—C23—C24—C25	1.4 (8)	C13—C14—Sn2—C7	88.9 (3)
C23—C24—C25—C26	-0.5 (8)	C13—C14—Sn2—O2 ⁱ	-170.2 (3)
C24—C25—C26—C27	-0.9 (7)	C13—C14—Sn2—O1	-20.6 (3)
C23—C22—C27—C26	-0.4 (6)	C5—C7—Sn2—O2	12.6 (3)
C23—C22—C27—C28	177.5 (4)	C5-C7-Sn2-C14	-174.4 (3)
C25—C26—C27—C22	1.3 (6)	$C5-C7-Sn2-O2^{i}$	87.2 (3)
C25—C26—C27—C28	-176.6 (4)	C5-C7-Sn2-O1	-61.5 (3)
C22-C27-C28-Sn1	-100.3 (4)	C29—O1—Sn2—O2	-177.7 (3)
C26-C27-C28-Sn1	77.5 (4)	Sn1—O1—Sn2—O2	-6.25 (9)
C35—C30—C31—C32	-0.7 (6)	C29—O1—Sn2—C14	70.2 (3)
C30-C31-C32-C33	3.0 (6)	Sn1—O1—Sn2—C14	-118.38 (13)
C30-C31-C32-C36	-176.5 (4)	C29—O1—Sn2—C7	-58.1 (3)
C31—C32—C33—C34	-2.9 (7)	Sn1—O1—Sn2—C7	113.31 (13)
C36—C32—C33—C34	176.6 (5)	C29—O1—Sn2—O2 ⁱ	-172.8 (2)
C32—C33—C34—C35	0.5 (7)	Sn1—O1—Sn2—O2 ⁱ	-1.4 (2)
C31—C30—C35—C34	-1.8 (6)	Sn1—O5—S1—O3	45.4 (3)
C31-C30-C35-S1	175.4 (3)	Sn1—O5—S1—O4	-83.3 (2)
C33—C34—C35—C30	1.9 (6)	Sn1—O5—S1—C35	161.7 (2)
C33—C34—C35—S1	-175.3 (3)	C30—C35—S1—O3	-173.1 (3)
Sn2—O2—Sn1—C21	86.45 (16)	C34—C35—S1—O3	4.1 (4)
Sn2 ⁱ —O2—Sn1—C21	-78.6 (2)	C30—C35—S1—O4	-47.5 (4)
Sn2—O2—Sn1—C28	-96.43 (16)	C34—C35—S1—O4	129.6 (4)
Sn2 ⁱ —O2—Sn1—C28	98.5 (2)	C30—C35—S1—O5	68.5 (3)
Sn2—O2—Sn1—O1	-7.05 (10)	C34—C35—S1—O5	-114.3 (3)
Sn2 ⁱ —O2—Sn1—O1	-172.1 (2)		
Symmetry codes: (i) $-x+2$, $-y$, $-z+1$.			

